首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   241篇
  免费   3篇
  国内免费   5篇
测绘学   8篇
大气科学   31篇
地球物理   47篇
地质学   124篇
海洋学   5篇
天文学   33篇
综合类   1篇
  2022年   1篇
  2021年   2篇
  2020年   3篇
  2019年   2篇
  2018年   9篇
  2017年   10篇
  2016年   14篇
  2015年   8篇
  2014年   15篇
  2013年   20篇
  2012年   28篇
  2011年   7篇
  2010年   8篇
  2009年   10篇
  2008年   11篇
  2007年   22篇
  2006年   7篇
  2005年   3篇
  2004年   9篇
  2003年   11篇
  2002年   6篇
  2001年   2篇
  2000年   3篇
  1999年   3篇
  1998年   5篇
  1997年   3篇
  1996年   3篇
  1995年   5篇
  1994年   3篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1989年   3篇
  1988年   2篇
  1986年   1篇
  1984年   1篇
  1980年   1篇
  1979年   1篇
排序方式: 共有249条查询结果,搜索用时 187 毫秒
21.
—The influence of soil moisture and vegetation variation on simulation of monsoon circulation and rainfall is investigated. For this purpose a simple land surface parameterization scheme is incorporated in a three-dimensional regional high resolution nested grid atmospheric model. Based on the land surface parameterization scheme, latent heat and sensible heat fluxes are explicitly estimated over the entire domain of the model. Two sensitivity studies are conducted; one with bare dry soil conditions (no latent heat flux from land surface) and the other with realistic representation of the land surface parameters such as soil moisture, vegetation cover and landuse patterns in the numerical simulation. The sensitivity of main monsoon features such as Somali jet, monsoon trough and tropical easterly jet to land surface processes are discussed.¶Results suggest the necessity of including a detailed land surface parameterization in the realistic short-range weather numerical predictions. An enhanced short-range prediction of hydrological cycle including precipitation was produced by the model, with land surface processes parameterized. This parameterization appears to simulate all the main circulation features associated with the summer monsoon in a realistic manner.  相似文献   
22.
A coupled 1D-2D hydrodynamic model, MIKE FLOOD was used to simulate the flood inundation extent and flooding depth in the delta region of Mahanadi River basin in India. Initially, the 1D model MIKE 11 was calibrated using river water level and discharge data of various gauging sites for the monsoon period (June to October) of the year 2002. Subsequently, the calibrated set up was validated using both discharge and water level data for the same period of the year 2001. The performance of calibration and validation results of MIKE 11 were evaluated using different performance indices. A bathymetry of the study area with a spatial resolution of 90m was prepared from SRTM DEM and provided as an input to the 2D model, MIKE 21. MIKE 11 and MIKE 21 models were then coupled using lateral links to form the MIKE FLOOD model set up for simulating the two dimensional flood inundations in the study area. Flood inundation is simulated for the year 2001 and the maximum flood inundation extent simulated by the model was compared with the corresponding actual inundated area obtained from IRS-1D WiFS image.  相似文献   
23.
We present a brief review of progress in the understanding of general spiral and elliptical galaxies, through merger, star formation and AGN activities. With reference to case studies performed with the GMRT, we highlight the unique aspects of studying galaxies in the radio wavelengths where powerful quasars and bright radio galaxies are traditionally the dominating subjects. Though AGN or quasar activity is extremely energetic, it is extremely short-lived. This justify focussing on transitional galaxies to find relic-evidences of the immediate past AGN-feedback which decide the future course of evolution of a galaxy. Relic radio lobes can be best detected in low frequency observations with the GMRT, LOFAR and in future SKA. The age of these relic radio plasma can be as old as a few hundred Myr. There is a huge gap between this and what is found in optical bands. The very first relic-evidences of a past quasar activity (Hanny’s Voorwerp) was discovered in 2007 by a Galaxy Zoo citizen-scientist, a school teacher, in the optical bands. This relic is around a few tens of thousand years old. More discoveries needed to match these time-scales with star formation time-scales in AGN host galaxies to better understand black hole galaxy co-evolution process via feedback-driven quenching of star formation. It is now well-accepted that discovery and characterization of such faint fuzzy relic features can be more efficiently done by human eye than a machine. Radio interferometry images are more complicated than optical and need the citizen-scientists to be trained. RAD@home, the only Indian citizen-science research project in astronomy, analysing TIFR GMRT Sky Survey (TGSS) 150 MHz data and observing from the Giant Meterwave Radio Telescope (GMRT), was launched in April 2013. Unique, zero-infrastructure zero-funded design of RAD@home as a collaboratory of 69 trained e-astronomers is briefly described. Some of the new-found objects like episodic radio galaxies, radio-jet and companion galaxy interaction, radio galaxy bent by motion of the intra-filament medium in a Mpc-scale galaxy filament etc. are briefly presented as demonstration of its potential. Citizen-science has not only opened up a new way for astronomy research but also possibly the only promising way to extract maximum science out of the Big Data in the SKA-era. This possibly can convert the Big Data problem into a prospect. Citizen-science can contribute to the knowledge creation in never-seen-before speed and in approach. As it is based on internet, it can provide an equal opportunity of academic-growth to people even in the under-developed regions where we always need to put our optical and radio telescopes. This can liberate the research-activity of city-based research-institutes out of the four brick walls and alleviate various socio-economic and geo-political constraints on growth of citizens educated in undergraduate-level science but located in remote areas.  相似文献   
24.
This paper investigates surface elevation changes that occurred during 1996–2004 in the Jharia coalfield through the digital elevation model (DEM) generated using synthetic aperture radar interferometry (InSAR) using ERS-1/2 (European Remote Sensing Satellite) tandem and RADARSAT-1 data. The comparison of elevation values derived from the InSAR DEM and topographic height data shows a bias of 23.08 m with root-mean-square error of ±2.31 m (5.8 %). The accuracy of the DEM was investigated by comparing the elevation profiles with the digitized elevation contour data at four different locations. The profile comparison shows a mean bias of 22.68 m. Local topography shows changes in elevation up to ±40.00 m due to mining activities on the 8-year time period. The results of InSAR-derived heights and topographic heights were comparable and well-matched except at a few locations where topographic data were unavailable. DEM generated using InSAR due to its high spatial details is ideal for the detection and estimation of surface elevation changes in mining areas.  相似文献   
25.
Socioeconomic developments and industrialization exert tremendous impact on beaches which is often neglected. Heavy metal (Cr, Mn, Co, Ni, Cu, Zn, Cd, and Pb) contents were estimated in the intertidal region from Kalpakkam to Mamallapuram (20 km), southeast coast of India covering seven locations. To evaluate the level of contamination of these metals; enrichment factor (EF), geoaccumulation index (I geo), contamination factor (CF), pollution load index (PLI) and modified degree of contamination (mCd) were applied. The results were also compared with the sediment quality guidelines (SQGs) to find out the eco-toxicity level. Metal contents in the beach sediment were observed in the order: Fe > Al > Mn > Cr > Cu > Ni > Zn > Pb > Co > Cd. Grain size distribution showed medium to coarse nature of the sediment. Significant positive correlation was found among the metals indicating their common source of input. Based on EF, minor enrichment of Mn and Zn and moderately severe to severe enrichment of Cr, Cu, Pb and Cd were observed which was further confirmed by I geo and CF values. Moreover, Mamallapuram showed a very high CF value for Cd (>6) indicating very high contamination accountable to anthropogenic sources. PLI and mCd in all the stations indicated unpolluted nature except M1 where the values pointed moderate degree of contamination. As per the SQGs, Ni and Cr values exceeded the probable effect limit value implying that these metals can have adverse impacts. None of the metals exceeded the effect range median indicating that the beach sediment is not very toxic.  相似文献   
26.
In the present study, the cumulative seismic energy released by earthquakes (M w ≥ 5) for a period of 1897 to 2009 is analyzed for northeast (NE) India. For this purpose, a homogenized earthquake catalogue in moment magnitude (M w ) has been prepared. Based on the geology, tectonics and seismicity, the study region is divided into three source zones namely, 1: Arakan-Yoma Zone (AYZ), 2: Himalayan Zone (HZ) and 3: Shillong Plateau Zone (SPZ). The maximum magnitude (M max ) for each source zone is estimated using Tsuboi’s energy blocked model. As per the energy blocked model, the supply of energy for potential earthquakes in an area is remarkably uniform with respect to time and the difference between the supply energy and cumulative energy released for a span of time, is a good indicator of energy blocked and can be utilized for the estimation of maximum magnitude (M max ) earthquakes. The proposed process provides a more consistent model of gradual accumulation of strain and non-uniform release through large earthquakes can be applied in the assessment of seismic hazard. Energy blocked for source zone 1, zone 2 and zone 3 regions is 1.35×1017 Joules, 4.25×1017 Joules and 7.25×1017 Joules respectively and will act as a supply for potential earthquakes in due course of time. The estimated M max for each source zone AYZ, HZ, and SPZ are 8.2, 8.6, and 8.7 respectively. M max obtained from this model is well comparable with the results of previous workers from NE region.  相似文献   
27.
This study assesses the impact of Doppler weather radar (DWR) data (reflectivity and radial wind) assimilation on the simulation of severe thunderstorms (STS) events over the Indian monsoon region. Two different events that occurred during the Severe Thunderstorms Observations and Regional Modeling (STORM) pilot phase in 2009 were simulated. Numerical experiments—3DV (assimilation of DWR observations) and CNTL (without data assimilation)—were conducted using the three-dimensional variational data assimilation technique with the Advanced Research Weather Research and Forecasting model (WRF-ARW). The results show that consistent with prior studies the 3DV experiment, initialized by assimilation of DWR observations, performed better than the CNTL experiment over the Indian region. The enhanced performance was a result of improved representation and simulation of wind and moisture fields in the boundary layer at the initial time in the model. Assimilating DWR data caused higher moisture incursion and increased instability, which led to stronger convective activity in the simulations. Overall, the dynamic and thermodynamic features of the two thunderstorms were consistently better simulated after ingesting DWR data, as compared to the CNTL simulation. In the 3DV experiment, higher instability was observed in the analyses of thermodynamic indices and equivalent potential temperature (θ e) fields. Maximum convergence during the mature stage was also noted, consistent with maximum vertical velocities in the assimilation experiment (3DV). In addition, simulated hydrometeor (water vapor mixing ratio, cloud water mixing ratio, and rain water mixing ratio) structures improved with the 3DV experiment, compared to that of CNTL. From the higher equitable threat scores, it is evident that the assimilation of DWR data enhanced the skill in rainfall prediction associated with the STS over the Indian monsoon region. These results add to the body of evidence now which provide consistent and notable improvements in the mesoscale model results over the Indian monsoon region after assimilating DWR fields.  相似文献   
28.
In this paper exact solutions of the five-dimensional vacuum cosmological field equations based on Lyra geometry are obtained. Further it is shown that neither dust distribution nor perfect fluid distributions survive for the model. Some properties of the vacuum model are also discussed.  相似文献   
29.
A supervised principal component regression (SPCR) technique has been employed on general circulation model (GCM) products for developing a monthly scale deterministic forecast of summer monsoon rainfall (June–July–August–September) for different homogeneous zones and India as a whole. The time series of the monthly observed rainfall as the predictand variable has been used from India Meteorological Department gridded (1°?×?1°) rainfall data. Lead 0 (forecast initialized in the same month) monthly products from GCMs are used as predictors. The sources of these GCMs are International Research Institute for Climate and Society, Columbia University, National Center for Environmental Prediction, and Japan Agency for Marine Earth Science and Technology. The performance of SPCR technique is judged against simple ensemble mean of GCMs (EM) and it is found that over almost all the zones the SPCR model gives better skill than EM in June, August, and September months of monsoon. The SPCR technique is able to capture the year to year observed rainfall variability in terms of sign as well as the magnitude. The independent forecasts of 2007 and 2008 are also analyzed for different monsoon months (Jun–Sep) in homogeneous zones and country. Here, 1982–2006 have been considered as development year or training period. Results of the study suggest that the SPCR model is able to catch the observational rainfall over India as a whole in June, August, and September in 2007 and June, July, and August in 2008.  相似文献   
30.
This study has identified probable factors that govern ISMR predictability. Furthermore, extensive analysis has been performed to evaluate factors leading to the predictability aspect of Indian Summer Monsoon Rainfall (ISMR) using uncoupled and coupled version of National Centers for Environmental Prediction Coupled Forecast System (CFS). It has been found that the coupled version (CFS) has outperformed the uncoupled version [Global Forecast System (GFS)] of the model in terms of prediction of rainfall over Indian land points. Even the spatial distribution of rainfall is much better represented in the CFS as compared to that of GFS. Even though these model skills are inadequate for the reliable forecasting of monsoon, it imparts the capacious knowledge about the model fidelity. The mean monsoon features and its evolution in terms of rainfall and large-scale circulation along with the zonal and meridional shear of winds, which govern the strength of the monsoon, are relatively closer to the observation in the CFS as compared to the GFS. Furthermore, sea surface temperature–rainfall relation is fairly realistic and intense in the coupled version of the model (CFS). It is found that the CFS is able to capture El Niño Southern Oscillation ISMR (ENSO-ISMR) teleconnections much strongly as compared to GFS; however, in the case of Indian Ocean Dipole ISMR teleconnections, GFS has the larger say. Coupled models have to be fine-tuned for the prediction of the transition of El Niño as well as the strength of the mature phase has to be improved. Thus, to sum up, CFS tends to have better predictive skill on account of following three factors: (a) better ability to replicate mean features, (b) comparatively better representation of air–sea interactions, and (c) much better portrayal of ENSO-ISMR teleconnections. This study clearly brings out that coupled model is the only way forward for improving the ISMR prediction skill. However, coupled model’s spurious representation of SST variability and mean model bias are detrimental in seasonal prediction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号